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Abstract 

This work presents useful information on how different temperature profiles during the 

extrusion process affect the physical quality properties of the extrudates. In this study, feed 

mixtures were extruded using a twin-screw extruder; the barrel temperature profile was set at 

110oC for cooking extrusion process, and no additional heat for cold process.  Four extruded 

diets were designed: D2LT and D4LT for 2 mm and 4 mm diet produced with cold process, 

respectively, and D2HT and D4HT for 2 mm and 4 mm diet produced with cooking extrusion. 

Pellet durability index (PDI), expansion ratio (ER), sinking velocity (SV), water stability (WS) 

and water absorption index (WAI) were affected with the temperature condition. The pellets 
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produced with cooking extrusion had a higher PDI, SV, WAI and WS compared to cold process 

(p <0.0001). There was no significant difference in terms of ER between the extruded diet 

processed with different temperature at the same particle size. Reducing particle size from 4 

mm to 2 mm significantly affect the PDI, WAI. SV, WAI and WS in cooking extrusion diet. 

In cold process, the significant differences were found in PDI, ER, and WS, but no significant 

differences in SV and WAI. 

Keywords:  Cooking extrusion, Cold process, Physical quality, Size, Extrudates,  

 

1. Introduction 

Aquaculture is one of the fastest growing food production sectors in agriculture and 

plays a significant role in improving national food security, income and nutritional status of 

people in many regions (Yu et al., 2025; Kannadhason & Muthukumarappan, 2010; ). As 

intensive aquaculture continues to expand, research on diet quality and feeding strategies is 

being continually refined (Thornburg, 2025; Bu et al., 2024; Hertrampf & Piedad-Pascual, 

2012). In the evaluation of diet quality, producers must consider an extensive array of fish with 

different feeding habits (Hyatt, 1979). Since aquaculture species occupy different strata within 

the water column, a comprehensive knowledge on physiology and feeding behavior is required 

to maximize the opportunity for the fish to consume the diets being offered, avoid the loss of 

nutrients due to disintegration and leaching in the water (Turchini &Hardy, 2024; Parker, 2011) 

and maximize  feed conversion efficiencies (Stark, 2012; Guillaume, 2001). Thus, the feed 

manufacturing process must accommodate all the specific nutritional requirements to ensure 

optimal growth performance and health condition of the cultured species. 

In commercial aquaculture feed, important physical properties that constitute feed 

quality include the hardness, water stability, absorption, buoyancy, and resiliency (Cheng et 

al., 2024; Sørensen, 2012). These properties ensure the feed remains intact  during  production, 
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transportation, and until it reaches the feeding devices in fish farms (Sørensen et al., 2009). 

Durability and water stability are affected by various biochemical changes  that occur inside 

the extruder barrel (Sørensen et al., 2009; Thomas et al., 1999), while the floatability of the 

diet is affected by the expansion  achieved during the extrusion process (Adeparusi & 

Famurewa, 2011). Extrusion processes  improve the water stability, durability, hardness and 

buoyancy control compared to steam pelleted diets (Sørensen et al., 2009), making extrusion 

the most effective manufacturing technology for compound fish feed (Bowzer et al., 2016; 

Brown et al., 2015; Hertrampf & Piedad-Pascual, 2012; Khater et al., 2014).  

 Extrusion processing integrate multiple operations, including simultaneously mixing, 

cooking, kneading shearing, shaping and forming (Yadaf et al., 2021; Riaz, 2000; Riaz, 2008). 

According to Pennels et al. (2025) and Guillaume (2001), Extrusion processing uses a barrel 

housing one or two screws that compress a mixture of raw materials using a combination of 

pressure and heat along the length of the barrel over a short period. At the end of the barrel, the 

mixture is shaped by being forced through one or several openings in a die, with the resulting 

strands cut by a knife.  The product  is then cooled and dried (Bowzer et al., 2016; Guillaume, 

2001). During extrusion, a combination of moisture, pressure and heat can partially denature 

the protein and gelatinize the starch in raw materials (Friesen et al., 1992; Jeong et al., 1991; 

Kim et al., 2006). This process  significantly   affects starch chemistry, feed digestibility, 

expansion, and water stability of the pellets (Rosentrater et al., 2009).  

The present study evaluates the effect of two different barrel temperatures during twin-

screw extrusion processing and the effects of two different pellet sizes on the durability index, 

expansion ratio, sinking velocity, water stability, and water absorption index of the extruded 

products. 

 

2. Material and Methods 
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2.1      Feed formulation and preparation 

Four diets with similar compositions were manufactured using commercial methods 

with a twin-screw extruder (DNDL-44, Buhler Inc., Plymouth, MN, USA) by the U.S. Fish and 

Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, USA. The ingredients 

(excluding the Menhaden fish oil, which was applied to the feeds post-extrusion; see below) 

were mixed in a paddle mixer (Marion Mixers, Inc., Marion, IA, USA) in a 100-kg batch 

followed by grinding to a particle size of <200 µm using an air-swept pulverizer (Model 18H; 

Jacobsen, Minneapolis, MN, USA) (Table 1). Two-extrusion processes were evaluated: (1) 

extrusion- cooking, defined as using temperatures above 110oC to gelatinize the starch and (2) 

cold process, defined when the starch is not gelatinized, and ingredients are primarily pressed 

into a form. The cooking-extrusion diets were exposed to an average of 110oC for 

approximately 14 seconds in five-barrel sections, with the last section maintained at 62oC. 

Pressure at the die head was approximately 50 bars, and screw speed was maintained at 423 

rpm. Portions of the feeds were extruded through a 3 mm die for 4.0 mm pellets (D4HT) and 

1.5 mm die for 2 mm pellets (D2HT). The diets were dried in a pulse bed drier (Buhler AG) 

until moisture readings were below 6%. Pellets were dried at approximately 107°C with an 

upper limit outflow air temperature of approximately 88°C. The diets were then cooled at 

ambient air temperatures for final moisture levels of less than 10%.  Fish oil was then applied 

using a Phlauer vacuum infusion coater (A & J Mixing, Ontario, Canada) after the pellets were 

cooled.  

The cold process diet consisted of two distinct sizes of feeds, with all the oil mixed in 

the mash prior to pelleting, and also manufactured with the Buhler twin-screw extruder. No 

additional heat was added, and barrel tempering units were set at 15oC, which resulted in an 

average barrel temperature of 23.2oC mid-way through production. The cold-extruded diet’s 

solids feed rate was half that of the cooking extruded pellets, which resulted in a longer 
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retention time in the barrels (28 seconds), but only 13 bars of pressure at the end plate. The 

2mm (D2LT) and 4mm pellets (D4LT) were manufactured with 2- and 4-mm dies, 

respectively. All finished diets were bagged and stored in a temperature-controlled room until 

analysis and shipment. 
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2.2  Proximate and amino acid composition of diets 

The protein, moisture, lipid, fiber and ash content were determined using standard 

methods described by Association of Official Analytical Chemists (AOAC, 1990). The amino 

acid composition of the diet was quantified by Agricultural Experiment Station Chemical 

Laboratories, University of Missouri (Columbia, MO, USA) and the mean of each treatment 

was taken. 

 

2.3  Analysis of physical properties 

2.3.1 Pellet durability index (PDI) 

Approximately 500 g of each diets were manually sieved (U.S.A. standard testing, 

ASTM E-11 specification, Daigger, Vernon Hills, IL, USA) to remove initial fines, and then 

tumbled in a pellet durability tester (Model PDT-110, Seedburo Equipment Company, 

Chicago, IL, USA) for 10 min. Afterwards, the samples were again sieved, and then weighed 

on an electronic analytical balance (Mettler Toledo ML6001E precision balances, 

Switzerland). Pellet durability index was calculated as follow: 

Pellet Durability Index (%) =  
𝑀𝑎𝑡

𝑀𝑏𝑡
 ˟ 100 

Where: Mat is the mass of pellet after tumbling (g) and Mbt is the mass before tumbling (g) 

 

2.3.3  Expansion ratio  

 Expansion ratio (ER) was determined as the ratio of the extrudate diameter to the 

diameter of die nozzle (Conway & Anderson, 1973). The diameter of the extrudates for each 

treatment was measured with a digital caliper (Digimatic Series N0. 293, Mitutoyo Co., Tokyo, 

Japan) 
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2.3.4 Sinking velocity  

 Sinking velocity (SV) was measured using the method developed by Das et al. (1993) 

and was determined by monitoring the time taken for an extrudate to reach the bottom of a 

1000 mL measuring cylinder filled with distilled water. Distance travelled for the time taken 

gave the sinking velocity (ms-1) 

 

2.3.5 Water absorption index (WAI) 

Approximately, 2 g of extrudates for each diet was placed in 20 mL of distilled water 

and stirred with a magnetic stirrer (Southeast Science, Model H4000-HS, Korea) at low speed, 

which simulates the movement of water of pond, until the extrudates broke or disintegrated 

over a period of 30 min, and then centrifuged at 3000 x g for 10 min. The mass of remaining 

gel was weighed, and WAI was calculated as the ratio of gel mass (Wg) to the sample mass 

(Wds) (Jones et al., 2000).   

Water absorption index (unitless) = 
𝑊𝑔

𝑊𝑑𝑠
   

 

2.3.6 Water stability  

Water stability (WS) was measured as the ratio of pellet retained on a wire screen after 

immersion of 3 – 5 g of each replicate diet in 100 mL water for 20 min and oven drying at 1050 

C for 24 h to the initial pellets (Lim & Cuzon, 1994). 

 

 

 

 

2.4      Statistical analysis 
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Mean results per physical properties were expressed as a mean ± standard deviation 

(SD) and subjected to two-way analysis of variance (ANOVA) with interaction using diet size 

and extrusion temperature condition as the independent variables. Prior to analysis, Cramer-

von Mises test and Anderson-Darling test were performed to analyze the normal distribution 

of the physical parameters. Student’s t test was applied to assess any difference in PDI, 

expansion ratio, sinking velocity, WAI and water stability were compared between two 

different diet sizes subjected to the same treatment. Statistical significance was defined at 

p<0.05 and analysed using the General Linear Model procedure in the SAS system (V9.4, SAS 

Institute, Cary, NC, USA). 

 

3. Results 

3.1  Nutrient composition of experimental diets 

The proximate composition of crude protein, moisture, crude fat, crude fiber and ash 

are presented in Table 2. The level of crude fat was higher in D4LT compared to D2LT. 

However, crude protein, moisture and ash content showed comparable levels among the 

treatments. In addition, no differences were observed on the amino acid profile of the diet 

produced by using two different extrusion processes, cooking-extrusion and cold process. 

 

3.2 Physical properties of diets 

 Two-way ANOVA showed that the expansion ratio, sinking velocity (SV), water 

absorption index (WAI) and water stability (WS) were significantly influenced by temperature 

conditions during the extrusion process and the size of the diet (p <0.0001). However, for the 

Pellet Durability Index (PDI, %)., barrel temperatures during twin-screw extrusion processing 

had a more significant effect (p <0.0001, by two-way ANOVA) compared to the size of the 

diet (p = 0.1663).  
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Based on student t test results to determine the differences between two different sizes 

of diet subjected to the same treatment, bigger size (4 mm) significantly increased the 

expansion ratio, SV and WS compared to lower size (2 mm) of diet either produced by using 

cooking-extrusion condition or cold process. In addition, smaller size of diet produced by using 

cooking-extrusion process had higher water absorption index and no significant differences in 

diet extruded by using cold process. Finally, 2 mm diet extruded in cold process had the higher 

PDI (%) compared to 4 mm. 

 

Discussion 

The choice of feed production methods for the aquaculture industry largely depends on 

species characteristics, production cost, and their impact on the culture environment 

(Bektursunova et al., 2023; Ebbing et al., 2022; Espinoza-Ortega et al., 2024; Guillaume, 2001; 

Wang et al., 2021). In a study with rainbow trout (Salmo gairdneri R.), extruded diets had 

better physical properties than steam pellets and  resulted in prolonged gastric emptying and 

higher feed efficiency compared to the group of fish reared on steam pellets (Hilton et al., 

1981). In addition, a study performed by Misra et al. (2002) showed that the extruded pellets 

induced better feed conversion ratio (FCR) and protein utilization of post-larvae of 

Macrobrachium rosenbergii in comparison to those maintained with steam pellets.  While 

steam pelleting can sometimes replace the function of extruded diet for aquaculture purposes, 

extrusion remains the preferred method (Guillaume, 2001; Riaz, 2023; Xing et al., 2024). 

In the present study, changing the conditioning temperature in the barrel section of 

double-screw extrusion process and pellet size significantly affected the physical properties of 

the diets. Results shown in Table 3 indicated that the PDI of the extrudates processed with 

cooking-extrusion were higher than those produced with the cold process. Increasing pellet size 

from 2 to 4 mm resulted in an increase in durability of extrudate produced by using cooking-
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extrusion process. However, at the cold-process, smaller size yielded significantly higher PDI 

compared to bigger sizes. The  effects of barrel and die temperature of pellet mill have been 

reviewed (Tumuluru et al., 2010), highlighting  the ability of the densified biomass to remain 

intact during the handling process as die temperature increased. Moreover, the presence of non-

starch polysaccharides (NSP) in the diet might also contribute to the pellets not being crushed 

during the handling process (Kraugerud et al., 2011). The effect of changing size on resulting 

extruded strength was observed by others with different ingredients. For example, Khater et al. 

(2014) reported that the mean durability was increased as the pellet size decreased from 3.0 to 

1.0 mm at two different protein ratios. Likewise, the PDI of extruded catfish feed formulated 

by using 47.3% of soybean meal as the protein source was increased when the particle size 

reduces from 1.2 mm to 0.7 mm (Rolfe et al., 2001). However, considering the interaction 

effect on this study, changes in durability are more attributed to changes in temperature rather 

than changes in size. 

In aquaculture, manufacturing low-polluting diets and avoiding the risk of leaching 

nutrients caused by disintegration of pellets has received much attention with significant 

quality innovations (Guillaume, 2001). In the present study, changes in temperature, die 

pressure, and screw speed during cooking extrusion produced more stable feed compared to 

the cold process. In agreement with current results, better WAI was also observed in pellets 

produced with cooking extrusion with chamber temperature condition raised up to 90% 

compared to steam pelleting (Larrea et al., 2005). According to Misra et al. (2002) The superior 

water stability of the extruded diet might be attributed to starch gelatinization under high 

temperature, combined with high pressure and shear during the manufacturing process. 

Additionally , the density and moisture content of extruded diet might play a role in 

determining the absorption index (Misra et al., 2002; Singh & Muthukumarappan, 2016) and 

can have significant implications in the storage stability of pellets (Chevanan et al., 2007). 
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Although no clear trend was observed, this study indicated that when the pellet size of cooking 

extrusion pellet increased from 2 mm to 4 mm, the mean WAI was decreased from 3.60 to 

2.52. On the other hand, no significant difference was observed between 2 mm and 4 mm pellet 

produced with cold process. Since WAI values could vary depending on the diet composition 

and processing (Thomas et al., 1999), changes in this study were mostly influenced by the 

temperature. 

In this study, an increase in SV (cm s⁻¹) was observed in diets produced by the cooking 

extrusion process compared to those produced by the cold process. Within the same treatment, 

bigger size also caused significant increase in SV. Since SV was associated with air entrapped 

in particles to reduce the specific gravity and capability of diet to absorb the water (Chevanan 

et al., 2010; Hilton et al., 1981), higher numerical value gives  the impression that cooking-

extrusion produces a more dense and compact diet compared to cold-process. Indeed, the 

heavier density of 4 mm diet compared to 2 mm will cause a significant increase in SV for 

extruded diet either produced with cooking-extrusion or cold process. 

The highest water stability was obtained in cooking-extrusion process and bigger size 

of diet subjected to different extrusion process. The poorer stability found in cold process of 2 

mm diet might be related to the compacted conditions and density of the diet (Rout & 

Bandyopadhyay, 1999). Meanwhile, extrusion process and size of the diet also had a significant 

interaction to the expansion ratio. Several studies have indicated that the expansion ratio of the 

extrudates depends on extrusion condition (Chevanan et al., 2007; Miller, 1985; Moore et al., 

1990), residence time (Fan et al., 1994; Mitchell et al., 1994) and the die design (Bouzaza et 

al., 1996). Among the variables, barrel temperature plays a critical role in controlling the 

expansion properties by lowering the melt viscosity and increasing the longitudinal expansion 

(Chinnaswamy, 1993; Singh et al., 2014). 

 

Jo
ur

na
l P

re
-p

ro
of



4. Conclusion 

In present study, changes in extrusion conditions, specifically the barrel temperature, 

significantly affected the physical properties of extruded diets, including the durability index, 

expansion ratio, sinking velocity, water absorption index and water stability. A significant 

interaction was also found between the extrusion conditions and size of the extruded diet on 

these physical properties when all ingredients exposed to an average of 110oC for 

approximately 14 seconds in five-barrel sections. 
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Table 1. Composition (g 100 g-1 as is) of diet manufactured using two-extrusion process. 

Ingredient Inclusion rate (% as-is) 

Menhaden fishmeal, Special Select® 12 

Corn protein concentrate, Empyreal® 75 10 

Soybean meal 48% CP 10 

Chicken 42 – ADF 10 

Wheat gluten meal 4 

Jo
ur

na
l P

re
-p

ro
of



Blood meal, spray dried 2.5 

Wheat flour, durum 30.03 

Menhaden fish oila 10.01 

Lecithin (Yelkinol AC dry) 1 

Vitamin C (Rovimax® Stay-C® 35) 0.15 

Vitamin premix, ARS 702 1 

Trace mineral premix, ARS 1440 0.1 

Sodium chloride 0.28 

Magnesium oxide 0.06 

Potassium chloride 0.56 

Monocalcium phosphate 2.28 

Choline Chloride 50% 1 

DL-Methionine 0.56 

Lysine HCl 2.66 

Threonine 0.63 

Taurine 1 

Yttrium oxide 0.1 

Carophyll® Pink, 10% astaxanthin, 0.08 
a incorporated via post extrusion top-coating 

 

 

Table 2. Proximate and Amino acid (AA) composition (g kg-1, dry matter) of experimental 

diets. D2LT: 2-mm pellets processed with low temperature (cold process); D2HT: 2-mm pellets 

processed with high temperature (cooking-extrusion); D4LT: 4-mm pellets processed with low 

temperature; D4HT: 4-mm pellets processed high temperature. 

AA (g kg-1, dry matter) D2LT D2HT D4LT D4HT 

Taurine 1.11 1.12 1.24 1.23 

Hydroxyproline 0.26 0.24 0.24 0.23 

Aspartic Acid 3.08 3.10 3.02 3.07 

Threonine 2.03 2.05 1.96 1.97 

Serine 1.46 1.52 1.47 1.45 

Glutamic Acid 7.75 7.84 7.86 7.94 

Proline 3.00 2.99 3.00 3.01 

Lanthionine 0.00 0.00 0.00 0.00 

Glycine 1.99 1.97 1.91 1.87 

Alanine 2.42 2.43 2.37 2.39 

Cysteine 0.53 0.54 0.52 0.53 

Valine 2.13 2.15 2.11 2.14 

Methionine 1.29 1.29 1.26 1.28 

Isoleucine 1.66 1.68 1.66 1.69 
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Leucine 3.94 3.97 3.93 3.99 

Tyrosine 1.52 1.51 1.51 1.53 

Phenylalanine 2.18 2.19 2.16 2.20 

Hydroxylysine 0.10 0.10 0.09 0.10 

Ornithine 0.01 0.01 0.01 0.01 

Lysine 4.14 4.19 4.09 4.16 

Histidine 1.00 1.01 0.99 1.00 

Arginine 2.08 2.10 2.07 2.11 

Tryptophan 0.44 0.45 0.38 0.35 

     

Crude Protein 45.11 45.82 44.73 45.64 

Moisture 3.37 2.42 3.71 3.56 

Crude Fat 14.84 14.31 17.02 12.70 

Crude Fiber 0.92 0.93 0.97 1.39 

Ash 7.42 7.59 7.38 7.51 

 

Table 3. Physical properties of extruded diets produced by using two different extrusion 

processes 

Extrusion Diet 

Size 

Pellet 

Durability 

Index (%) 

Expansion 

ratio 

Sinking 

velocity 

(cm s-1) 

Water 

absorption 

index 

Water 

stability (%) 

 

Cooked 

(D2HT) 

2 

mm 

99.41±0.19 1.01±0.02 12.92±9.46 3.60±0.06* 86.20±0.15 

Cooked 

(D4HT) 

4 

mm 

99.87±0.09* 1.13±0.04* 64.35±4.49* 2.52±0.07 88.18±0.08* 

Cold 

(D2LT) 

2 

mm 

97.53±0.11* 1.06±0.02 0.40±0.09 2.23±0.15 82.60±0.54 

Cold 

(D4LT) 

4 

mm 

97.34±0.07 1.11±0.02* 0.55±0.16 2.28±0.23 87.72±0.18* 

Goodness-of-Fit for Normal distribution 

Cramer-von 

Mises 

p >0.250 p >0.250 p =0.034 p >0.250 p >0.250 
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Anderson-

Darling 

p >0.250 p >0.250 p = 0.033 p >0.250 p >0.250 

Two-way ANOVA (Type I SS) 

Extrusion Process p <0.0001 p = 0.0181 p <0.0001 p <0.0001 p <0.0001 

Diet Size p = 0.1663 p <0.0001 p <0.0001 p <0.0001 p <0.0001 

Interaction p = 0.0058 p <0.0001 p <0.0001 p <0.0001 p <0.0001 

* = Significant differences (t test, p<0.05) between two different size produce within the 

same treatment 

 Different superscript letters denote significant differences among the treatments 
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